Abstract

Purpose The purpose of the paper was the application of computational fluid dynamics (CFD) techniques in fluid flow using Maxwell’s equation for partial slip modelling, estimating the flow parameters, and selecting tangential momentum accommodation coefficient (TMAC) for tight rock samples in permeability calculations. Design/methodology/approach The paper presents a numerical analysis of fluid flow in a low-porosity rock sample by using CFD. Modelling results allowed to determine mass flow rates in a rock sample and to calculate permeability values using a modified Darcy’s equation. Three-dimensional (3D) geometrical model of rock sample generated using computed X-ray tomography was used in the analysis. Steady-state calculations were carried out for defined boundary conditions in the form of pressure drop. The simulations were applied taking into account the slip phenomenon described by Maxwell’s slip model and TMAC. Findings Values of permeability were calculated for different values of TMAC, which vary from 0 to 1. Results in the form of gas mass flow rates were compared with the measured value of permeability for rock sample, which confirmed the high accuracy of the presented model. Practical implications Calculations of fluid flow in porous media using CFD can be used to determine rock samples’ permeability. In slip flow regime, Maxwell’s slip model can be applied and the empirical value of TMAC can be properly estimated. Originality/value This paper presents the usage of CFD, Maxwell’s equation for partial slip modelling, in fluid flow mechanism for tight rock samples. 3D geometric models were generated using created pre-processor (poROSE software) and applied in the raw form for simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.