Abstract

In order to study the effect of typhoons on the accumulated deformation of monopile foundations for offshore wind turbines, a series of 1-g laboratory model tests with a geometrical scale of 1:100 were carried out. Through the horizontal static and cyclic loading tests of a stiff pile embedded in a medium dense sand deposit, the relationship between the accumulated rotation of the pile and the number of loading cycles under different loading conditions was obtained. The results show that the final accumulated rotation is mainly caused by the typhoon load series and is not affected by the loading sequence. Based on these results, a method is presented to predict the accumulated rotation of the monopile foundation during its service life, and a case study of a 6 MW wind turbine supported by a monopile at a water depth of 30 m in sand is conducted by using the method. The results show that the permanent accumulated rotation of the monopile throughout the design life is mainly contributed by cyclic loading induced by typhoons and the contribution of cyclic loading with small amplitudes can be ignored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.