Abstract

It had been suggested that permafrost thaw could promote frozen nitrogen (N) release and modify microbial N transformation rates, which might alter soil N availability and then regulate ecosystem functions. However, the current understanding of this issue is confined to limited observations in the Arctic permafrost region, without any systematic measurements in other permafrost regions. Based on a large-scale field investigation along a 1,000km transect and a laboratory incubation experiment with a 15 N pool dilution approach, this study provides the comprehensive evaluation of the permafrost N status, including the available N content and related N transformation rates, across the Tibetan alpine permafrost region. In contrast to the prevailing view, our results showed that the Tibetan alpine permafrost had lower available N content and net N mineralization rate than the active layer. Moreover, the permafrost had lower gross rates of N mineralization, microbial immobilization and nitrification than the active layer. Our results also revealed that the dominant drivers of the gross N mineralization and microbial immobilization rates differed between the permafrost and the active layer, with these rates being determined by microbial properties in the permafrost while regulated by soil moisture in the active layer. In contrast, soil gross nitrification rate was consistently modulated by the soil content in both the permafrost and the active layer. Overall, patterns and drivers of permafrost N pools and transformation rates observed in this study offer new insights into the potential N release upon permafrost thaw and provide important clues for Earth system models to better predict permafrost biogeochemical cycles under a warming climate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.