Abstract

The availability of soil inorganic nitrogen (N) is primarily regulated by the rates of soil N transformation, including mineralization, ammonification, nitrification, and denitrification, and are sensitive to climate, plant, and soil factors. However, the interactive effects among these factors regulating soil N transformation rates in ecosystems across large spatial scales remain unclear. Here, we investigated the spatial patterns of the potential N mineralization, nitrification, ammonification, and denitrification rates in relation to plant traits and soil edaphic conditions across a 600-km precipitation gradient in secondary grasslands of South China. The soil potential N mineralization and nitrification rates significantly increased with increasing precipitation. However, the soil potential N ammonification and denitrification rates did not significantly vary with precipitation. Moreover, the soil potential N nitrification and denitrification rates significantly increased with increasing soil pH, whereas the potential N mineralization and ammonification rates decreased with increasing soil pH. The soil potential N mineralization rate was positively correlated with soil labile N but negatively correlated with soil recalcitrant C and N contents. Our results revealed that changes in soil NH4+-N and pH along precipitation gradients primarily controlled the potential N mineralization, nitrification, and ammonification rates. In contrast, soil NO3−-N, soil pH, and plant N inputs predominantly regulated the potential N denitrification rate. Overall, our results reveal that soil N transformation varies along the precipitation gradient, and these results need to be considered when studying the effects of climate change on N cycling in grassland ecosystems across diverse environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.