Abstract

We have analyzed the mechanics of peristaltic pumping of a non-Newtonian fluid through an axisymmetric conduit. The material was represented by the constitutive equation for a second-order fluid. A perturbation series (to second order) in dimensionless wavenumber of an infinite harmonic traveling wave was used to obtain explicit forms for the velocity field and a relation between the flow rate and the pressure gradient, in terms of the Reynolds number, the dimensionless non-Newtonian parameters, and the occlusion. Results were compared with other studies, in both Newtonian and non-Newtonian cases. Also, we have shown that the flow of a Newtonian fluid through a rigid, axisymmetric tube with an axial, sinusoidal variation of radius is a special case of this analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.