Abstract
Defects in regulatory T cells (Treg cells) aggravate multiple sclerosis (MS) after its onset and the absence of Treg cell functions can also exacerbate the course of disease in an animal model of MS. However, autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. In contrast, neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Highlights
Andrew Jones and Daniel Hawiger*Autoimmune neuroinflammation in many multiple sclerosis (MS) models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells
This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes
Many crucial studies on the pathogenesis and possible treatments of multiple sclerosis (MS) have been carried out using a mouse model of autoimmune central nervous system (CNS) disease that in many ways mimics MS, experimental autoimmune encephalomyelitis (EAE) induced by immunization with various neuronal antigens such as myelin oligodendrocyte glycoprotein (MOG), myelin basic protein (MBP), and proteolipid protein (PLP) [3,4,5,6,7]
Summary
Autoimmune neuroinflammation in many MS models can be acutely provoked in healthy animals leading to an activation of encephalitogenic T cells despite the induction of immune tolerance in the thymus including thymically produced (t)Treg cells. Neuroinflammation can be ameliorated or even completely prevented by the antigen-specific Treg cells formed extrathymically in the peripheral immune system (pTreg cells) during tolerogenic responses to relevant neuronal antigens. This review discusses the specific roles of Treg cells in blocking neuroinflammation, examines the impact of peripheral tolerance and dendritic cells on a relevant regulation of neuroinflammation, and explores some of the most recent advances in elucidation of specific mechanisms of the conversion and function of pTreg cells including the roles of CD5 and Hopx in these processes.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have