Abstract
We evaluated peripheral nerve regeneration across an 80-mm gap using a novel artificial nerve conduit. The conduit was made of a polyglycolic acid (PGA)–collagen tube filled with laminin-coated collagen fibers. Twelve beagle dogs underwent implantation of the nerve conduit across an 80-mm gap in the left peroneal nerve. In four other dogs used as negative controls, the nerve was resected and left unconnected. Histological observation showed that numerous unmyelinated and myelinated nerve fibers, all smaller in diameter and with a thinner myelin sheath than normal nerve fibers, regrew through and beyond the gap 12 months after implantation. The distribution of the regenerated axonal diameters was different from that of the normal axonal diameters. Compound muscle action potentials, motor evoked potentials, and somatosensory evoked potentials were recorded in most animals 3 months after implantation. Peak amplitudes and latencies recovered gradually, which indicating the functional establishment of the nerve connection with the target organs. In addition to the ordinary electrophysiological recoveries, potentials with distinct latencies originating from Aα, Aδ and C fibers became distinguishable at the 6th lumbar vertebra following stimulation of the peroneal nerve distal to the gap 12 months after implantation. The pattern of walking without load was restored to almost normal 10–12 months after implantation. Neither electrophysiological nor histological restoration was obtained in the controls. Our nerve conduit can guide peripheral nerve elongation and lead to favorable functional recovery across a wider nerve gap than previously reported artificial nerve conduits.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have