Abstract

BackgroundMyofascial pain syndrome (MPS) is an important clinical condition that is characterized by chronic muscle pain and a myofascial trigger point (MTrP) located in a taut band (TB). Previous studies showed that EphrinB1 was involved in the regulation of pathological pain via EphB1 signalling, but whether EphrinB1-EphB1 plays a role in MTrP is not clear.MethodsThe present study analysed the levels of p-EphB1/p-EphB2/p-EphB3 in biopsies of MTrPs in the trapezius muscle of 11 MPS patients and seven healthy controls using a protein microarray kit. EphrinB1-Fc was injected intramuscularly to detect EphrinB1s/EphB1s signalling in peripheral sensitization. We applied a blunt strike to the left gastrocnemius muscles (GM) and eccentric exercise for 8 weeks with 4 weeks of recovery to analyse the function of EphrinB1/EphB1 in the muscle pain model.ResultsP-EphB1, p-EphB2, and p-EphB3 expression was highly increased in human muscles with MTrPs compared to healthy muscle. EphB1 (r = 0.723, n = 11, P < 0.05), EphB2 (r = 0.610, n = 11, P < 0.05), and EphB3 levels (r = 0.670, n = 11, P < 0.05) in the MPS group were significantly correlated with the numerical rating scale (NRS) in the MTrPs. Intramuscular injection of EphrinB1-Fc produces hyperalgesia, which can be partially prevented by pre-treatment with EphB1-Fc. The p-EphB1 contents in MTrPs of MPS animals were significantly higher than that among control animals (P < 0.01). Intramuscular administration of the EphB1 inhibitor EphB1-Fr significantly suppressed mechanical hyperalgesia.ConclusionsThe present study showed that the increased expression of p-EphB1/p-EphB2/p-EphB3 was related to MTrPs in patients with MPS. This report is the first study to examine the function of EphrinB1-EphB1 signalling in primary muscle afferent neurons in MPS patients and a rat animal model. This pathway may be one of the most important and promising targets for MPS.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.