Abstract

ABSTRACTOverview: Periostin (POSTN) is critical to bone and dental tissue morphogenesis, postnatal development, and maintenance; however, its roles in tissue repair and regeneration mediated by human periodontal ligament mesenchymal stem cells (PDLSCs) remain unclear. The present study was designed to evaluate the effects of POSTN on hPDLSCs in vitro. Materials and Methods: hPDLSCs were isolated and characterized by their expression of the cell surface markers CD44, CD90, CD105, CD34, and CD45. Next, 100 ng/mL recombinant human POSTN protein (rhPOSTN) was used to stimulate the hPDLSCs. Lentiviral POSTN shRNA was used to knockdown POSTN. The cell counting kit-8 (CCK8) and scratch assay were used to analyze cell proliferation and migration, respectively. Osteogenic differentiation was investigated using an alkaline phosphatase (ALP) activity assay, alizarin staining, and quantitative calcium analysis and related genes/protein expression assays. Results: Isolated hPDLSCs were positive for CD44, CD90, and CD105 and negative for CD34 and CD45. In addition, 100 ng/mL rhPOSTN significantly accelerated scratch closure, and POSTN-knockdown cells presented slower closure at 24 h and 48 h. Furthermore, the integrin inhibitor Cilengitide depressed the scratch closure that was enhanced by POSTN at 24 h. The CCK8 assay showed that 100 ng/mL rhPOSTN promoted hPDLSC proliferation. Moreover, 100 ng/mL rhPOSTN increased the expression of RUNX2, OSX, OPN, OCN, and VEGF and enhanced ALP activity and mineralization. POSTN silencing decreased the expression of RUNX2, OSX, OPN, OCN, and VEGF and inhibited ALP activity and mineralization. Conclusions: POSTN accelerated the migration, proliferation, and osteogenic differentiation of hPDLSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call