Abstract
Magnetic skyrmions are vortex-like spin textures, which are usually treated as two-dimensional objects. In their lattice state, they form well-ordered, hexagonal structures, which have been studied in great detail. To obtain a three-dimensional (3D) skyrmion crystal, these planes can be envisaged to be stacked up forming skyrmion strings in the third dimension. Here, we report the observation of a 3D skyrmion phase in Cu2OSeO3 by carrying out reciprocal space mapping in resonant elastic x-ray scattering. We observe regions in the magnetic field-cooling phase diagram in which the skyrmion phase apparently coexists with the conical phase. However, such a coexistence is forbidden due to symmetry arguments. Instead, the skyrmion strings themselves are periodically modulated along their axes, as confirmed by micromagnetic simulations. The periodic modulation is in fact a necessary consequence of the evolution of the skyrmion phase out of the conical state and should therefore be a universal property of skyrmion strings in chiral helimagnets.
Highlights
Magnetic skyrmions are two-dimensional (2D) vortex-like spin textures, which are ordered in the form of hexagonally packed lattices and which are found in all helimagnetic B20 materials, such as MnSi, FeCoSi, FeGe, and Cu2OSeO31–3
The applied in-plane field forces the skyrmion strings to lie in the sample plane, keeping their hexagonal order lattice arrangement
The six magnetic reciprocal lattice points of the skyrmion lattice phase lie in a plane in the vicinity of the (001) peak
Summary
Magnetic skyrmions are two-dimensional (2D) vortex-like spin textures, which are ordered in the form of hexagonally packed lattices and which are found in all helimagnetic B20 materials, such as MnSi, FeCoSi, FeGe, and Cu2OSeO31–3 These 2D lattices have been explored extensively[4] and the understanding of the interaction between skyrmions and with their surroundings[5,6], as well as external driving forces[7,8,9,10,11,12], led to a plethora of device proposals[13,14,15,16,17]. We explore the transition between modulated and unmodulated strings, demonstrating the possibility of tuning the nature of skyrmion interactions
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.