Abstract
In this paper, the Fourier integral transform–singular integral equation method is presented for the problem of a periodic array of cracks in a functionally graded piezoelectric strip bonded to a different functionally graded piezoelectric material. The properties of two materials, such as elastic modulus, piezoelectric constant and dielectric constant, are assumed in exponential forms and vary along the crack direction. The crack surface condition is assumed to be electrically impermeable or permeable. The mixed boundary value problem is reduced to a singular integral equation over crack by applying the Fourier transform and the singular integral equation is solved numerically by using the Lobatto–Chebyshev integration technique. The analytic expressions of the stress intensity factors and the electric displacement intensity factors are derived. The effects of the loading parameter λ, material constants and the geometry parameters on the stress intensity factor, the energy release ratio and the energy density factor are studied.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have