Abstract

A novel surface micro-texturing process is proposed that is capable of generating extremely scalable periodic patterns on a workpiece surface. The process, henceforth named as ‘biprism interference micro-machining’ utilizes a two-beam interference pattern generated by a Fresnel biprism placed coaxially in the path of a laser pulse to fabricate periodic micro-channels on aluminum surfaces. The channels were fabricated over an area of approximately 8 mm × 6 mm and with a periodicity of 9 and 21 μm, by using custom-built two-faceted biprisms with side angles of 4° and 1.5°, respectively. A beam propagation simulation was carried out to predict the intensity distribution and contrast of the intensity pattern of laser pulse at the workpiece surface. The entire process takes 1–8 laser pulses, thereby demonstrating ultra-fast speed and scalability. Also, the efficiency, precision and resolution of the process are higher than that of conventional mask-based and interference-based micro-machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.