Abstract

The Microarc Oxidation (MAO) layer on titanium alloy was mainly composed of TiO2, and there were some defects, such as holes and cracks, which made the performance of the MAO layer not ideal. To enhance the properties of the MAO layer, titanium carbide (TiC) particles were added to the electrolyte of a phosphate–silicate system as an additive. Consequently, the MAO layers containing the TiC phase on Ti6Al4V alloy were produced. The MAO process, composition, microstructure, and hardness of the MAO layer were comprehensively analyzed. Their frictional performance was assessed under reciprocating friction conditions without lubrication. The findings suggested that added TiC particles in the electrolyte played a significant role in creating the MAO layer, enhancing its thickness. The electrolyte without TiC particles produced an MAO layer primarily composed of TiO2 in two different mineral forms (rutile and anatase). Adding TiC particles resulted in the presence of TiC within the MAO layer, thereby facilitating the formation of a reinforced oxide layer. This addition also led to an improvement in the densification of the layer and a reduction in porosity. Notably, corrosion resistance testing indicated that incorporating 6 g l−1 TiC into the electrolyte resulted in superior performance compared with that obtained from the base electrolyte alone by achieving 1.4 times higher corrosion resistance. Moreover, a hardness value of 690 HV for the MAO layer was attained at a content level of 9 g l−1 TiC, demonstrating a significant 65% enhancement compared to the base oxide layer. This finding also demonstrated significantly enhanced friction property with a wear-volume reduction to 0.81 mm3. The findings on the relationship between the preparation of the MAO layer and its structure and properties can provide valuable guidance for designing and preparing the MAO layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.