Abstract
The ITER divertor will feature tungsten monoblocks as the plasma-facing component (PFC) that will be subject to extreme temperature and radiation environments. This paper reports the development of surface morphologies on tungsten under helium bombardment at high temperatures, which has important implications for safety, retention, and PFC erosion. Polycrystalline tungsten samples were implanted in the Dual Advanced Ion Simultaneous Implantation Experiment dual-beam ion implantation experiment at the University of Wisconsin-Madison with He-only and simultaneous He-D implantation at incidence angles of 55 deg, ion energies of 30 keV, and surface temperatures of 900°C to 1100°C. Morphologies resulting from angled incidence conditions differed from those produced under normal incidence bombardment at similar energy and temperature conditions in previous work. A variety of ordered and disordered morphologies dependent on grain orientation were observed for fluences up to 6 × 1018 He cm−2. These morphologies displayed dependencies on crystal orientation at low fluences and incident beam directions at higher fluences. These structures appeared, with variation, under both single-species He and mixed He-D implantations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.