Abstract
At a mixed Nash equilibrium, the payoff of a player does not depend on her own action, as long as her opponent sticks to his. In a periodic strategy, a concept developed in a previous paper [V. K. Oikonomou and J. Jost, Periodic strategies: A new solution concept and an algorithm for nontrivial strategic form games, Adv. Compl. Syst. 20(5) (2017) 1750009], in contrast, the own payoff does not depend on the opponent’s action. Here, we generalize this to multi-player simultaneous perfect information strategic form games. We show that also in this class of games, there always exists at least one periodic strategy, and we investigate the mathematical properties of such periodic strategies. In addition, we demonstrate that periodic strategies may exist in games with incomplete information; we shall focus on Bayesian games. Moreover, we discuss the differences between the periodic strategies formalism and cooperative game theory. In fact, the periodic strategies are obtained in a purely non-cooperative way, and periodic strategies are as cooperative as the Nash equilibria are. Finally, we incorporate the periodic strategies in an epistemic game theory framework, and discuss several features of this approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.