Abstract
This paper gives an analytic proof of the existence of Schubart-like orbit, a periodic orbit with singularities in the symmetric collinear four-body problem. In each period of the Schubart-like orbit, there is a binary collision (BC) between the inner two bodies and a simultaneous binary collision (SBC) of the two clusters on both sides of the origin. The system is regularized and the existence is proved by using a “turning point” technique and a continuity argument on differential equations of the regularized Hamiltonian.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.