Abstract
We apply the symmetry reduction method of Roberts to numerically analyze the linear stability of a one-parameter family of symmetric periodic orbits with regularizable simultaneous binary collisions in the planar pairwise symmetric four-body problem with a mass $m\in(0,1]$ as the parameter. This reduces the linear stability analysis to the computation of two eigenvalues of a $3\times 3$ matrix for each $m\in(0,1]$ obtained from numerical integration of the linearized regularized equations along only the first one-eighth of each regularized periodic orbit. The results are that the family of symmetric periodic orbits with regularizable simultaneous binary collisions changes its linear stability type several times as $m$ varies over $(0,1]$, with linear instability for $m$ close or equal to 0.01, and linear stability for $m$ close or equal to 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.