Abstract
Abstract In this paper, we study the nonlinear Klein–Gordon systems arising from relativistic physics and quantum field theories { u t t - u x x + b u + ε v + f ( t , x , u ) = 0 , v t t - v x x + b v + ε u + g ( t , x , v ) = 0 , \left\{\begin{aligned} \displaystyle{}u_{tt}-u_{xx}+bu+\varepsilon v+f(t,x,u)&\displaystyle=0,\\ \displaystyle v_{tt}-v_{xx}+bv+\varepsilon u+g(t,x,v)&\displaystyle=0,\end{aligned}\right. where u , v u,v satisfy the Dirichlet boundary conditions on spatial interval [ 0 , π ] [0,\pi] , b > 0 b>0 and f , g f,g are 2 π 2\pi -periodic in 𝑡. We are concerned with the existence, regularity and asymptotic behavior of time-periodic solutions to the linearly coupled problem as 𝜀 goes to 0. Firstly, under some superlinear growth and monotonicity assumptions on 𝑓 and 𝑔, we obtain the solutions ( u ε , v ε ) (u_{\varepsilon},v_{\varepsilon}) with time period 2 π 2\pi for the problem as the linear coupling constant 𝜀 is sufficiently small, by constructing critical points of an indefinite functional via variational methods. Secondly, we give a precise characterization for the asymptotic behavior of these solutions, and show that, as ε → 0 \varepsilon\to 0 , ( u ε , v ε ) (u_{\varepsilon},v_{\varepsilon}) converge to the solutions of the wave equations without the coupling terms. Finally, by careful analysis which is quite different from the elliptic regularity theory, we obtain some interesting results concerning the higher regularity of the periodic solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.