Abstract
We investigate the existence, the non-existence and the asymptotic behavior of the least-energy solutions of a semilinear elliptic equation with the Hardy–Sobolev critical exponent. In the boundary singularity case, it is known that the mean curvature of the boundary at origin plays a crucial role on the existence of the least-energy solutions. In this paper, we study the relation between the asymptotic behavior of the solutions and the mean curvature at origin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.