Abstract
We study the nonlocal scalar field equation with a vanishing parameter:(Pϵ){(−Δ)su+ϵu=|u|p−2u−|u|q−2uinRNu∈Hs(RN), where s∈(0,1), N>2s, q>p>2 are fixed parameters and ϵ>0 is a vanishing parameter. For ϵ small, we prove the existence and qualitative properties of positive solutions. Next, we study the asymptotic behavior of ground state solutions when p is subcritical, supercritical or critical Sobolev exponent 2⁎=2NN−2s. For p<2⁎, the ground state solution asymptotically coincides with unique positive ground state solution of (−Δ)su+u=up, whereas for p=2⁎ the asymptotic behavior of the solutions is given by the unique positive solution of the nonlocal critical Emden–Fowler type equation. For p>2⁎, the solution asymptotically coincides with a ground-state solution of (−Δ)su=up−uq. Furthermore, using these asymptotic profile of positive solutions, we establish the local uniqueness of positive solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.