Abstract

In this article, we investigate a prey– predator model with Allee effect and state-dependent impulsive harvesting. We obtain the sufficient conditions for the existence and uniqueness of order-1 periodic solution of system (1.2) by means of the geometry theory of semicontinuous dynamic system and the method of successor function. We also obtain that system (1.2) exhibits the phenomenon of heteroclinic bifurcation about parameter \(\alpha \). The methods used in this article are novel and prove the existence of order-1 periodic solution and heteroclinic bifurcation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.