Abstract

An oblique detonation wave for a Mach 7 inlet flow over a long enough wedge of 30° turning angle is simulated numerically using Euler equation and one-step rection model. The fifth-order WENO scheme is adopted to capture the shock wave. The numerical results show that with the compression of the wedge wall the detonation wave front structure is divided into three sections: the ZND model-like strcuture, single-sided triple point structure and dual-headed triple point strucuture. The first structure is the smooth straight, and the second has the characteristic of the triple points propagating dowanstream only with the same velocity, while the dual-headed triple point structure is very complicated. The detonation waves facing upstream and downstream propagate with different velocities, in which the periodic collisions of the triple points cause the oscillation of the detonation wave front. This oscillation process has temporal and spatial periodicity. In addition, the triple point trace are recorded to obtain different cell structures in three sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.