Abstract

A comprehensive numerical study was carried out to investigate the unsteady cell-like structures of oblique detonation waves (ODWs) for a fixed Mach 7 inlet flow over a wedge of 30° turning angle. The effects of grid resolution and activation energy were examined systematically at a dimensionless heat addition of 10. The ODW front remains stable for a low activation energy regardless of grid resolution, but becomes unstable for a high activation energy featuring a cell-like wave front structure. Similar to the situation with an ordinary normal detonation wave (NDW), a continuous increase in the activation energy eventually causes the wave-front oscillation to transit from a regular to an irregular pattern. The wave structure of an unstable ODW, however, differs considerably from that of a NDW. Under the present flow condition, triple points and transverse waves propagate downstream, and the numerical smoke-foil record exhibits traces of triple points that rarely intersect with each other. Several instability-driving mechanisms were conjectured from the highly refined results. Since the reaction front behind a shock wave can be easily destabilized by disturbance inherent in the flowfield, the ODW front becomes unstable and displays cell-like structures due to the local pressure oscillations and/or the reflected shock waves originating from the triple points. The combined effects of various instability sources give rise to a highly unstable and complex flow structure behind an unstable ODW front.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call