Abstract
In the paper, we determine the period of an n-dimensional nonlinear dynamical system by using a derived formula in an (n + 1)-dimensional augmented space. To form a periodic motion, the periodic conditions in the state space and nonlinear first-order differential equations constitute a special periodic problem within a time interval with an unknown length. Two periodic problems are considered: (a) boundary values are given and (b) boundary values are unknown. By using the shape functions, a boundary shape function method (BSFM) is devised to obtain an initial value problem with the initial values of the new variables given. The unknown terminal values of the new variables and period are determined by two iterative algorithms for the case (a) and one iterative algorithm for the case (b). The periodic solutions obtained from the BSFM satisfy the periodic conditions automatically. For the numerical example, the computed order of convergence displays the merit of the BSFM. For the sake of comparison, the iterative algorithms based on the shooting method for cases (a) and (b) were developed by directly implementing the Poincaré map into the fictitious time-integration method to determine the period. The BSFM is better than the shooting method in terms of convergence speed, accuracy, and stability.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.