Abstract
In the paper, the period of an n-dimensional nonlinear dynamical system is computed by a formula derived in an (n+1)-dimensional augmented state space. The periodic conditions and nonlinear first-order ordinary differential equations constitute a specific periodic boundary value problem within a time interval, whose length is an unknown finite constant. Two periodic problems are considered: (I) boundary values are given and (II) boundary values are unknown. A boundary shape function method (BSFM), using the derived shape functions, is devised to an initial value problem with the initial values of new variables given, whereas the terminal values and period are determined by iterative algorithms. The periodic solutions obtained by the BSFM satisfy the periodic conditions automatically. For the sake of comparison, the iterative algorithms based on the shooting method are developed, directly implementing the Poincaré map with the fictitious time integration method to determine the periodic solutions, where the periodic conditions are transformed to a mathematically equivalent scalar equation. Owing to the implicit, non-differentiable and nonlinear property of the scalar equation, we develop a generalized derivative-free Newton method (GDFNM) to solve the periodic problem of case (I), which can pick up very accurate period through a few iterations. In numerical examples the computed order of convergence displays the merit of the proposed iterative algorithms. The BSFM and GDFNM are better than the shooting method from the aspects of convergence speed, accuracy and stability. A conventional Poincaré mapping method is introduced to solve the periodic problems with the same parameters. The BSFM converges faster and more accurate than the Poincaré mapping method and is less sensitive to the initial guesses of initial values and period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.