Abstract
Kerr oscillators are model systems which have practical applications in nonlinear optics. Optical Kerr effect, i.e., interaction of optical waves with nonlinear medium with polarizability χ (3) is the basic phenomenon needed to explain, for example, the process of light transmission in fibers and optical couplers. In this paper, we analyze the two Kerr oscillators coupler and we show that there is a possibility to control the dynamics of this system, especially by switching its dynamics from periodic to chaotic motion and vice versa. Moreover, the switching between two different stable periodic states is investigated. The stability of the system is described by the so-called maps of Lyapunov exponents in parametric spaces. Comparison of basins of attractions between two Kerr couplers and a single Kerr system is also presented.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have