Abstract
AbstractTo understand the emergence of life, a better understanding of the physical chemistry of primordial non‐equilibrium conditions is essential. Significant salt concentrations are required for the catalytic function of RNA. The separation of oligonucleotides into single strands is a difficult problem as the hydrolysis of RNA becomes a limiting factor at high temperatures. Salt concentrations modulate the melting of DNA or RNA, and its periodic modulation would enable melting and annealing cycles at low temperatures. In our experiments, a moderate temperature difference created a miniaturized water cycle, resulting in fluctuations in salt concentration, leading to melting of oligonucleotides at temperatures 20 °C below the melting temperature. This would enable the reshuffling of duplex oligonucleotides, necessary for ligation chain replication. The findings suggest an autonomous route to overcome the strand‐separation problem of non‐enzymatic replication in early evolution.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have