Abstract

We describe the implementation details of periodic local coupled-cluster theory with single and double excitations (CCSD) and perturbative triple excitations [CCSD(T)] using local natural orbitals (LNOs) and k-point symmetry. We discuss and compare several choices for orbital localization, fragmentation, and LNO construction. By studying diamond and lithium, we demonstrate that periodic LNO-CC theory can be applied with equal success to both insulators and metals, achieving speedups of 2 to 3 orders of magnitude even for moderately sized k-point meshes. Our final predictions of the equilibrium cohesive energy, lattice constant, and bulk modulus for diamond and lithium are in good agreement with previous theoretical predictions and experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.