Abstract

AbstractExperimental studies on the speciation of berkelium in carbonate media have shown that complexation of berkelium(III) by carbonate results in spontaneous oxidation to berkelium(IV) and that multiple species can be present in solution. We studied two proposed structures present in solution based on theoretical comparisons with spectroscopic data previously reported for Bk(IV) carbonate solutions. The multiconfigurational character of the ground and low‐lying excited states in both complexes is demonstrated to result from the strong spin‐orbit coupling. Although bonding in Bk(IV) carbonate and carbonate‐hydroxide complexes is dominated by strong Coulombic forces, the presence of non‐negligible covalent character is supported by ligand‐field theory, natural localized orbitals, topological studies of the electron density, and energy transition state natural orbitals for chemical valence. Bond orders based on natural localized molecular orbitals show that BkOH bonds possess enhanced orbital overlap, which is reflected in the bond strength. This is also observed in the decomposition of the orbital interaction energy into individual deformation density pairs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.