Abstract

In this paper, we consider a k-out-of-n load-sharing system with $n$ identical components sharing a certain amount of load. Each time a component fails, its load is distributed to the remaining components; we assume an increase in load increases the hazard rates of the remaining components. The system is periodically inspected to detect failed components. Two cases may occur in an inspection interval: if the number of failed components is less than $n-k+1$ , then the failed components are only rectified at periodic inspections; if the number of failures reaches $n-k+1$ , then the system fails, and at this time, all the failed components are inspected and rectified. A failed component is replaced or minimally repaired according to a probability which depends on its age at the failure time. The components' failures follow a Non-Homogenous Poisson Process (NHPP), and their intensity functions depend on their ages and the loads to which they are exposed at any moment. In this paper, we develop a model to find the optimal inspection interval for such a system, which minimizes the total expected cost incurred over the system lifecycle. We derive the analytical solution for the special case of a 1-out-of-2 system, and discuss its computational difficulties. We then present a simulation algorithm to find the required expected values in the objective function. Several numerical examples are presented to illustrate the proposed model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call