Abstract

A k-out-of-n:G load sharing system is a cluster of n components designed to withstand a certain amount of load in field operation, working only if no fewer than k components work. Previous research on a load sharing system has focused on predicting the time-independent reliability from the stress–strength model or estimating the unknown parameters of the time-dependent reliability for a given load sharing rule. Differently, in this paper, we consider the problem of determining the optimal n to maximize the reliability of both n-out-of-n:G and (n–1)-out-of-n:G load sharing systems. Since the load of each component decreases in n, the proportional hazard model is employed to relate the component failure rate with the load, assuming that the components, which have exponential distributions for given loads, are independent of each other. We then derive a sufficient condition under which a smaller number of components each withstanding a high load is preferred to a larger number of components each withstanding a small load. A numerical example is given for the rocket propulsion system to illustrate the result.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.