Abstract
We consider models with nearest-neighbor interactions and with the set [0, 1] of spin values, on a Cayley tree of order k ≥ 1. We show that periodic Gibbs measures are either translation-invariant or periodic with period two. We describe two-periodic Gibbs measures of the model. For k = 1 we show that there is no any periodic Gibbs measure. In case k ≥ 2 we get a sufficient condition on Hamiltonian of the model with uncountable set of spin values under which the model has no periodic Gibbs measure. We construct several models which have at least two periodic Gibbs measures.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have