Abstract
The notion of a matrix factorization was introduced by Eisenbud in the commutative case in his study of bounded (periodic) free resolutions over complete intersections. Since then, matrix factorizations have appeared in a number of applications. In this work, we extend the notion of (homogeneous) matrix factorizations to regular normal elements of connected graded algebras over a field.Next, we relate the category of twisted matrix factorizations to an element over a ring and certain Zhang twists. We also show that in the setting of a quotient of a ring of finite global dimension by a normal regular element, every sufficiently high syzygy module is the cokernel of some twisted matrix factorization. Furthermore, we show that in the noetherian AS-regular setting, there is an equivalence of categories between the homotopy category of twisted matrix factorizations and the singularity category of the hypersurface, following work of Orlov.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.