Abstract

I use matrix factorizations to describe branes at simple singularities of elliptic fibrations. Each node of the corresponding Dynkin diagrams of the ADE-type singularities is associated with one indecomposable matrix factorization which can be deformed into one or more factorizations of lower rank. Branes with internal fluxes arise naturally as bound states of the indecomposable factorizations. Describing branes in such a way avoids the need to resolve singularities. This paper looks at gauge group breaking from E8 fibers down to SU(5) fibers due to the relevance of such fibrations for local F-theory GUT models. A purpose of this paper is to understand how the deformations of the singularity are understood in terms of its matrix factorizations. By systematically factorizing the elliptic fiber equation, this paper discusses geometries which are relevant for building semi-realistic local models. In the process it becomes evident that breaking patterns which are identical at the level of the Kodaira type of the fibers can be inequivalent at the level of matrix factorizations. Therefore the matrix factorization picture supplements information which the conventional less detailed descriptions lack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.