Abstract

When maize seedlings were exposed to cold stress, a genome-wide demethylation occurred in root tissues. Screening of genomic DNA identified one particular fragment that was demethylated during chilling. This 1.8-kb fragment, designated ZmMI1, contained part of the coding region of a putative protein and part of a retrotransposon-like sequence. ZmMI1 was transcribed only under cold stress. Direct methylation mapping revealed that hypomethylated regions spanning 150 bases alternated with hypermethylated regions spanning 50 bases. Analysis of nuclear DNA digested with micrococcal nuclease indicated that these regions corresponded to nucleosome cores and linkers, respectively. Cold stress induced severe demethylation in core regions but left linker regions relatively intact. Thus, methylation and demethylation were periodic in nucleosomes. The following biological significance is conceivable. First, because DNA methylation in nucleosomes induces alteration of gene expression by changing chromatin structures, vast demethylation may serve as a common switch for many genes that are simultaneously controlled upon environmental cues. Second, because artificial demethylation induces heritable changes in plant phenotype (Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabilko, H. (1990) Mol. Gen. Genet. 220, 441-447), altered DNA methylation may result in epigenetic inheritance, in which gene expression is modified without changing the nucleotide sequence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.