Abstract

Abstract. A 50‐year time series of monthly stratospheric ozone readings from Arosa, Switzerland, is analyzed. The time series exhibits the properties of a periodically correlated (PC) random sequence with annual periodicities. Spectral properties of PC random sequences are reviewed and a test to detect periodic correlation is presented. An autoregressive moving‐average (ARMA) model with periodically varying coefficients (PARMA) is fitted to the data in two stages. First, a periodic autoregressive model is fitted to the data. This fit yields residuals that are stationary but non‐white. Next, a stationary ARMA model is fitted to the residuals and the two models are combined to produce a larger model for the data. The combined model is shown to be a PARMA model and yields residuals that have the correlation properties of white noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.