Abstract

<p style='text-indent:20px;'>In this paper, we prove the existence and multiplicity of subharmonic bouncing motions for a Hill's type sublinear oscillator with an obstacle. Furthermore, we also consider the existence, multiplicity and dense distribution of symmetric periodic bouncing solutions when the weight function is even. Based on an appropriate coordinate transformation and the method of phase-plane analysis, we can study our main results via Poincar<inline-formula><tex-math id="M1">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula> map by applying some suitable fixed point theorems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.