Abstract

The exact Green's functions of the periodic Anderson model for $U\to \infty $ are formally expressed within the cumulant expansion in terms of an effective cumulant. Here we resort to a calculation in which this quantity is approximated by the value it takes for the exactly soluble atomic limit of the same model. In the Kondo region a spectral density is obtained that shows near the Fermi surface a structure with the properties of the Kondo peak. Approximate expressions are obtained for the static conductivity $% \sigma (T)$ and magnetic susceptibility $\chi (T)$ of the PAM, and they are employed to fit the experimental values of FeSi, a compound that behaves like a Kondo insulator with both quantities vanishing rapidly for $T\to 0$. Assuming that the system is in the intermediate valence region, it was possible to find good agreement between theory and experiment for these two properties by employing the same set of parameters. It is shown that in the present model the hybridization is responsible for the relaxation mechanism of the conduction electrons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.