Abstract

Room-temperature plasma-enhanced atomic layer deposition (PEALD) of ZnO was studied by depositing the films using diethylzinc and O2 plasma from inductively-coupled plasma (ICP) and capacitively-coupled plasma (CCP) plasma source configurations. The CCP-PEALD was operated using both remote and direct plasma. It was observed that the films deposited by means of remote ICP and CCP were all highly oxygen rich, independently on plasma operation parameters, but impurity (H, C) contents could be reduced by increasing plasma pulse time and applied power. With the direct CCP-PEALD the film composition was closer to stoichiometric, and film crystallinity was enhanced. The ZnO film growth was observed to be similar on silicon, polycarbonate and poly(methyl methacrylate) substrates, but changes in polymer surface morphology indicate plasma-induced damage during the deposition due to exposure to ion bombardment when direct plasma was applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.