Abstract

This study concerns the development of peridynamic (PD) strain energy density functions for a Neo-Hookean type membrane under equibiaxial, planar, and uniaxial loading conditions. The material parameters for each loading case are determined by equating the PD strain energy density to that of the classical continuum mechanics. The PD equations of motion are derived based on the Neo-Hookean model under the assumption of incompressibility. Numerical results concern the deformation of a membrane with a defect in the form of a hole, a crack, and a rigid inclusion under equibiaxial, planar, and uniaxial loading conditions. The PD predictions are verified by comparison with those of finite element analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.