Abstract

Bovine pericardium, stabilized with glutaraldehyde, is used widely in the construction of heart valve substitutes, but the design and construction of valve substitutes from this material are empirically based. Collagenous tissue can support tension, but experimental evidence indicates that flexure-induced compressive stresses can lead to fatigue failure. This study uses experimental results obtained from cyclic uniaxial load tests to predict the type and magnitude of operational stresses which occur in pericardial heterograft leaflets. Both Young's modulus and Poisson's ratio varied with uniaxial loading in pericardium, chemically modified free of tension. Leaflet stresses were analysed by using effective incremental representations of these parameters. In leaflets with unrestricted rotation at the point of attachment to the stent, the mid-plane tensions always exceeded the bending stresses, and no zones of leaflet compression were predicted. In contrast, with totally restricted leaflet rotation induced by clamping (possibly between a male and female frame) the bending stresses were greater than the mid-plane tensions at the hinge line and significant compressive stresses were predicted at this site. If elastic boundary conditions were introduced at the stent (possibly by wrapping the stent in pericardium) then the compressive stresses were reduced as the degree of elasticity was increased. Glutaraldehyde fixation of the pericardium under load produced a stiffer material; higher compressive stresses at the stent and significant increases in total stress were predicted for this tissue. The application of elevated pressure loading also increased the compressive and total stresses in the leaflet. Finally, it was shown that bicuspid leaflets were likely to experience higher stresses than tricuspid leaflets. This simple stress analysis should help valve designers of pericardial heterografts to identify those conditions which lead to tissue compression, high total stress, and ultimately material fatigue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.