Abstract

Octaazaperopyrenedioxides (OAPPDOs) are a new class of fluorescent polycyclic aromatic hydrocarbons based on a tetraazaperylene core that is formally condensed with N-substituted urea units in the two opposite peri positions. Here, we report the synthesis of series of substituted OAPPDO derivatives with different N-substitution patterns (H, alkyl, benzyl) in the peri positions, including bay-chlorinated OAPPDOs. Starting from the latter, a series of bay-arylated OAPPDOs was synthesized by Suzuki cross coupling, which resulted in the formation of helically chiral OAPPDO derivatives. The electrochemical and photophysical properties were investigated by UV/Vis and fluorescence spectroscopy as well as cyclic voltammetry. The P and M enantiomers of a phenylated OAPPDO were separated by semipreparative HPLC and further analyzed by CD spectroscopy. The frontier orbital energies, the mechanism of the isomerization, the electronic excitation and the CD spectrum (TD-DFT) were computed and compared to the experimental data. The reversible 1e- oxidation of the OAPPDOs generates the corresponding radical cations, one of which was characterized by EPR spectroscopy. The reversible oxidation process was also systematically investigated by spectro-electrochemistry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call