Abstract

Certain robot missions need to perform predictably in a physical environment that may have significant uncertainty. One approach is to leverage automatic software verification techniques to establish a performance guarantee. The addition of an environment model and uncertainty in both program and environment, however, means that the state space of a model-checking solution to the problem can be prohibitively large. An approach based on behavior-based controllers in a process-algebra framework that avoids state-space combinatorics is presented here. In this approach, verification of the robot program in the uncertain environment is reduced to a filtering problem for a Bayesian network. Validation results are presented for the verification of a multiple-waypoint and an autonomous exploration robot mission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.