Abstract

Certain robot missions need to perform predictably in a physical environment that may only be poorly characterized in advance. We have previously developed an approach to establishing performance guarantees for behavior-based controllers in a process-algebra framework. We extend that work here to include random variables, and we show how our prior results can be used to generate a Dynamic Bayesian Network for the coupled system of program and environment model. Verification is reduced to a filtering problem for this network. Finally, we present validation results that demonstrate the effectiveness of the verification of a multiple waypoint robot mission using this approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.