Abstract
In recent years, adsorption refrigeration technology has attracted wide attention from experts and scholars at home and abroad due to its environmental friendliness and energy saving advantages. In order to study the effectiveness of adsorption refrigeration technology to recover low-grade energy, a silica gel-water adsorption refrigeration system was proposed, which can effectively utilize low-grade energy such as industrial waste heat. The structure and composition of the system are introduced. The operation performance of the unit is tested under different working conditions by orthogonal experimental method, and the experimental results are analyzed. The effects of hot water temperature and flow, chilled water temperature and flow on the refrigeration capacity and COP value of the system are obtained. The experimental results show that under the low-temperature heat source of 55-75°C, the cooling capacity of the system can reach 5.3-12 and the COP value can reach 0.36-0.56. Under the same hot water temperature difference, the cooling capacity and COP value of the system increase rapidly under the condition of changing the hot water temperature at low temperature, indicating that increasing the heat source temperature at low temperature has a greater impact on the system performance. Through the analysis of primary and secondary effects, it is concluded that the inlet temperature of hot water is the main factor affecting the refrigeration capacity and COP value of the system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have