Abstract

Graphical Processing Units (GPUs) have evolved into highly parallel, multi-threaded, multicore powerful processors with high memory bandwidth. GPUs are used in a variety of intensive computing applications. The combination of highly parallel architecture and high memory bandwidth makes GPUs a potentially promising technology for e_ective real-time processing for High Energy Physics (HEP) experiments. However, not much is known of their performance in real-time applications that require low latency, such as the trigger for HEP experiments. We describe an R&D project with the goal to study the performance of GPU technology for possible low latency applications, performing basic operations as well as some more advanced HEP lower-level trigger algorithms (such as fast tracking or jet finding). We present some preliminary results on timing measurements, comparing the performance of a CPU versus a GPU with NVIDIA's CUDA general-purpose parallel computing architecture, carried out at CDF's Level-2 trigger test stand. These studies will provide performance benchmarks for future studies to investigate the potential and limitations of GPUs for real-time applications in HEP experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call