Abstract

Resistive Plate Chambers detectors are largely employed at the CERN LHC experiments thanks to their excellent trigger performances and contained costs. They are operated with a gas mixture made of 90%–95% of C2H2F4, that provides a high number of ion–electron pairs, about 5% of i-C4H10, that ensures the suppression of photon-feedback effects, and 0.3% of SF6, used as an electron quencher to further operate the detector in streamer-free mode. C2H2F4is known to be a Greenhouse gas, with a global warming potential (GWP) of 1430. CERN has identified several strategies to reduce the consumption of greenhouse gas emissions from particle detectors at LHC experiments. One research line is focused on the study of alternatives to C2H2F4. In this context, a conservative approach for the next years of LHC operation could be to focus on reducing the GWP of the RPC gas mixture by only adding CO2 and not using new gases, whose effects on detector long-term operation have to be studied. The RPC performance with standard gas mixture with the addition of 30%–50% of CO2 (and SF6 concentration between 0.3 and 0.9%) were studied both in laboratory set-up and at the CERN Gamma Irradiation Facility in presence of muon beam and gamma background radiation. Encouraging results were obtained showing that the addition of CO2 to the standard gas mixture can represent a mid-term solution to reduce emissions and lower operational costs by keeping stable detector performance and safe long-term operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call