Abstract

The research in underwater communication system is focused towards wireless networks in view of recent developments in wireless technology and increasing need for deep sea data mining. The underwater wireless optical communication (UWOC) have more advantages for short-range wireless links due to very high bandwidth and data rate than acoustic communication. Although UWOC offers high capacity links at low latencies, they suffer from limited communication range due to various distinctive characteristics of underwater channel. A major degrading effect associated with the underwater channel is turbulence-induced fading. To mitigate this fading and to extend the viable communication range, spatial multipath diversity techniques can be adopted over UWOC links. The proposed work evaluates the performance of a multicarrier modulation scheme, i.e., MIMO based DC biased Optical Orthogonal Frequency Division Multiplexing (DCO-OFDM) for underwater wireless optical channel. The simulation of MIMO-DC biased optical OFDM technique employing spatial diversity in underwater optical communication is a novel approach towards the determination of an optimal modulation technique for underwater optical wireless channels. The performance is evaluated based on the various parameters such as Signal to Interference plus Noise Ratio (SINR), Throughput and Bit Error Rate (BER). A simple experiment is conducted to demonstrate the BER performance assessment for different link distance of 0.45 m and 1.5 m with different transmitter and receiver configurations (SIMO and MIMO) for both clear water and coastal water using MIMO DCO OFDM technique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.