Abstract

AbstractRecently, a considerable number of research and development projects have focused on automatic vessels. A highly realistic simulator is needed to validate control algorithms for autonomous vessels. For instance, when considering the automatic berthing/unberthing of a vessel, the effect of wind in such low-speed operations cannot be ignored because of the low rudder performance during slow harbor maneuvers. Therefore, a simulator used to validate an automatic berthing/unberthing control algorithm should be able to reproduce the time histories of wind speed and wind direction realistically. Therefore, in our first report on this topic, to obtain the wind speed distribution, we proposed a simple algorithm to generate the time series and distribution of wind speed only from the mean wind speed. However, for wind direction, the spectral distribution could not be determined based on our literature surveys, and hence, a simple method for estimating the coefficients of the stochastic differential equation (SDE) could not be proposed. In this study, we propose a new methodology for generating the time history of wind direction based on the results of Kuwajima et al.’s work. They proposed a regression equation of the standard deviation of wind direction variation for the mean wind speed. In this study, we assumed that the wind direction distribution can be represented by a linear filter as in our previous paper, and its coefficients are derived from Kuwajima’s proposed equation. Then, as in the previous report, the time series of wind speed and wind direction can be calculated easily by analytically solving the one-dimensional SDE. The joint probability density functions of wind speed and wind direction obtained by computing them independently agree well with the measurement results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.