Abstract

This paper describes the applicability of artificial neural networks (ANNs) to predict performance of a horizontal ground-coupled heat pump (GCHP) system. Performance forecasting is the precondition for the optimal control and energy saving operation of heat pump systems. ANNs have been used in varied applications and they have been shown to be particularly useful in system modelling and system identification. In order to train the ANN, limited experimental measurements were used as training data and test data. In this study, in input layer, there are air temperature entering condenser unit and air temperature leaving condenser unit, and ground temperatures (1 and 2m); coefficient of performance of system (COPS) is in output layer. The back propagation learning algorithm with three different variants, namely Levenberg-Marguardt (LM), Pola-Ribiere conjugate gradient (CGP), and scaled conjugate gradient (SCG), and tangent sigmoid transfer function were used in the network so that the best approach can find. The most suitable algorithm and neuron number in the hidden layer are found as LM with seven neurons. For this number level, after the training, it is found that Root-mean squared (RMS) value is 1%, and absolute fraction of variance (R^2) value is 99.999% and coefficient of variation in percent (COV) value is 28.62%. It is concluded that, ANNs can be used for prediction of COPS as an accurate method in the systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.